汉扬编程 C语言入门 C++编程笔记:贪心算法实现部分背包问题

C++编程笔记:贪心算法实现部分背包问题

C++编程笔记:贪心算法实现部分背包问题

问题描述:

C++编程笔记:贪心算法实现部分背包问题

在部分背包问题中,可以不必拿走整个一件物品,而是可以拿走该物品的任意部分。以此求得在限定背包总重量,从给定的物品中进行选择的情况下的最佳(总价值最高)的选择方案。

C++编程笔记:贪心算法实现部分背包问题

细节须知:

C++编程笔记:贪心算法实现部分背包问题

分别输出到同文件夹下两个文本文件中,名称分别是:“backpack-object.txt”和“backpack-weight.txt”。

C++编程笔记:贪心算法实现部分背包问题

算法原理:

先求出所有物品的单位重量价值并进行由大到小的排序。其次从排序处于首位的物品开始选择直到无法完整装入背包的物品,将其部分装入背包以填满背包的总重量,从而求得价值最高的选择方案。

程序设计思路:

① 数据结构:结构体中存储物品序号、物品的重量、物品的价值、物品的单位重量价值;

② 利用C++自带的sort函数对结构体按照物品的单位重量价值进行降序排列;

③ 从排序处于首位的物品开始选择直到无法完整装入背包的物品,将其部分装入背包以填满背包的总重量,从而求得价值最高的选择方案。

时间复杂性分析:

首先,需要对输入的物品单位重量价值进行非减序排序,需要用O(nlogn)的时间。其次,当输入的物品已按物品单位重量价值非减序排列,算法只需θ(n)的时间选择n个物品,使算法可以求得价值最高的选择方案。

生成的数据可导入EXCEL中进行数据分析生成分析图表。

博客园:Weisswire

想要在程序员生涯内有更高的成就的话,C/C++就是一个既可以强化思维能力,又可以打好编程基础的编程语言,你想要做软件开发,成为核心程序员的话,学习C/C++的话笔者有一个C/C++的编程千人羣(Q艘索:C语言编程学习聚集地(无言建立))你如果感觉自学C/C++语言有困难的话,有兴趣学习或者了解一下C/C++编程的小伙伴就可以进来交流。

程序员必学算法「动态规划」:01背包用滚动数组来实现

通知:我已经将刷题指南全部整理到了Github :://github.com/youngyangyang04/leetcode-master,方便大家在电脑上阅读,这个仓库每天都会更新,大家快去给一个star支持一下吧!

C++编程笔记:贪心算法实现部分背包问题

昨天程序员必学算法「动态规划」:关于01背包问题,你该了解这些 中是用二维dp数组来讲解01背包。

今天我们就来说一说滚动数组,其实在前面的题目中我们已经用到过滚动数组了,就是把二维dp降为一维dp,一些录友当时还表示比较困惑。

那么我们通过01背包,来彻底讲一讲滚动数组!

接下来还是用如下这个例子来进行讲解

背包最大重量为4。

物品为:

重量价值物品0115物品1320物品2430

问背包能背的物品最大价值是多少?

一维dp数组(滚动数组)对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i – 1][j], dp[i – 1][j – weight[i]] + value[i]);

其实可以发现如果把dp[i – 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j – weight[i]] + value[i]);

于其把dp[i – 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

读到这里估计大家都忘了 dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

一定要时刻记住这里i和j的含义,要不然很容易看懵了。

动规五部曲分析如下:

确定dp数组的定义在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

一维dp数组的递推公式dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j – weight[j]]推导出来,dp[j – weight[i]]表示容量为j – weight[i]的背包所背的最大价值。

dp[j – weight[i]] + value[i] 表示 容量为 j – 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j],一个是取dp[j – weight[i]] + value[i],指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j – weight[i]] + value[i]);可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

一维dp数组如何初始化关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j – weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

一维dp数组遍历顺序代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品    for(int j = bagWeight; j >= weight[i]; j–) { // 遍历背包容量        dp[j] = max(dp[j], dp[j – weight[i]] + value[i]);    }}这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒叙遍历是为了保证物品i只被放入一次!,在动态规划:关于01背包问题,你该了解这些!中讲解二维dp数组初始化dp[0][j]时候已经讲解到过一次。

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 – weight[0]] + value[0] = 15

dp[2] = dp[2 – weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒叙遍历,就可以保证物品只放入一次呢?

倒叙就是先算dp[2]

dp[2] = dp[2 – weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 – weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒叙呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i – 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

(这里如果读不懂,就在回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

举例推导dp数组一维dp,费用用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

动态规划-背包问题9

一维dp01背包完整C++测试代码void test_1_wei_bag_problem() {    vector<int> weight = {1, 3, 4};    vector<int> value = {15, 20, 30};    int bagWeight = 4;    // 初始化    vector<int> dp(bagWeight + 1, 0);    for(int i = 0; i < weight.size(); i++) { // 遍历物品        for(int j = bagWeight; j >= weight[i]; j–) { // 遍历背包容量            dp[j] = max(dp[j], dp[j – weight[i]] + value[i]);        }    }    cout << dp[bagWeight] << endl;}int main() {    test_1_wei_bag_problem();}可以看出,一维dp 的01背包,要比二维简洁的多!初始化 和 遍历顺序相对简单了。

所以我倾向于使用一维dp数组的写法,比较直观简洁,而且空间复杂度还降了一个数量级!

在后面背包问题的讲解中,我都直接使用一维dp数组来进行推导。

总结以上的讲解可以开发一道面试题目(毕竟力扣上没原题)。

就是本文中的题目,要求先实现一个纯二维的01背包,如果写出来了,然后再问为什么两个for循环的嵌套顺序这么写?反过来写行不行?再讲一讲初始化的逻辑。

然后要求实现一个一维数组的01背包,最后再问,一维数组的01背包,两个for循环的顺序反过来写行不行?为什么?

注意以上问题都是在候选人把代码写出来的情况下才问的。

就是纯01背包的题目,都不用考01背包应用类的题目就可以看出候选人对算法的理解程度了。

相信大家读完这篇文章,应该对以上问题都有了答案!

此时01背包理论基础就讲完了,我用了两篇文章把01背包的dp数组定义、递推公式、初始化、遍历顺序从二维数组到一维数组统统深度剖析了一遍,没有放过任何难点。

大家可以发现其实信息量还是挺大的。

如果把程序员必学算法「动态规划」:关于01背包问题,你该了解这些 和本篇的内容都理解了,后面我们在做01背包的题目,就会发现非常简单了。

不用再凭感觉或者记忆去写背包,而是有自己的思考,了解其本质,代码的方方面面都在自己的掌控之中。

即使代码没有通过,也会有自己的逻辑去debug,这样就思维清晰了。

接下来就要开始用这两天的理论基础去做力扣上的背包面试题目了,录友们握紧扶手,我们要上高速啦!

就酱,学算法,认准「代码随想录」,值得你推荐给身边每一位朋友同学们!

我是程序员Carl,个人主页:://github.com/youngyangyang04

这里每天8:35准时推送一道经典算法题目,我选择的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!

@代码随想录 期待你的关注

我花了半年时间,整理的力扣刷题攻略,已经全部发布在Github上,点击下方链接查看吧!

本文来自网络,不代表汉扬编程立场,转载请注明出处:http://www.hyzlch.com/cjia/5854.html

求c语言程序:用倒冒泡法排几个数的大小顺序

易语言宝库怎样使用啊易语言宝库怎样使用?

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

返回顶部